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The reformulation of the mode-coupling theory (MCT) of the liquid-glass transition which in-
corporates the element of metastability is applied to the hard-sphere system. It is shown that the
glass transition in this system is not a sharp one at the special value of the density or the packing
fraction, which is in contrast to the prediction by the conventional MCT. Instead we find that the
slowing down of the dynamics occurs over a range of values of the packing fraction. Consequently,
the exponents governing the sequence of time relaxations in the intermediate time régime are given
as functions of the packing fraction, with one additional parameter that describes the overall scale
of the metastable potential energy for defects in the hard-sphere system. Implications of the present
model on the recent experiments on colloidal systems are also discussed.

PACS number(s): 64.70.Pf, 64.60.My, 66.30.Lw

I. INTRODUCTION

In Refs. [1,2], the notion of metastability was used in
the reformulation of the mode-coupling theory (MCT)
[3,4] of the liquid-glass transition. It was shown that the
temperature dependence of the transition is smooth, as
observed in recent experiments [5,6], showing no evidence
for the special transition temperature conventionally as-
sumed in MCT. In this paper, we apply the basic picture
obtained in Refs. [1,2] to a more realistic situation by con-
sidering the effects of the structure of supercooled liquids
on the slowing down of the dynamics. For a simple sys-
tem like hard-sphere fluids considered here, we find that
the observed slowing down of the dynamics occurs over
a range of values of the packing fraction. This is in con-
trast to the prediction by the conventional MCT [7] that
there exists a critical packing fraction for the transition.
Consequently, we find that the exponent parameters de-
scribing the relaxation sequence in the intermediate time
regime are given as smooth functions of the packing frac-
tion with one additional parameter, which is related to
the existence of metastable defects in the system.

Much of the recent theoretical progress on the liquid-
glass transition problem has been inspired by the MCT
[3,4]. It was particularly successful in explaining the very
elaborate sequence of time relaxations which has been
observed in many experiments [8,9]. The conventional
interpretation of this theory assumes a sharp transition
as the system approaches the critical temperature or the
critical density. Although the sharp nature of the tran-
sition is smeared by the cutoff effect [10], the notion of
a critical temperature or density at which the dynamics
is arrested still remains in the theory [11]. For example,
the exponents governing the time relaxations are defined
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only at that particular temperature or density. This is,
however, incompatible with the recent experimental re-
sults [5] showing a more universal behavior and smooth
temperature dependences. Other recent experiments [6]
also indicate that the exisitence of the well-defined tran-
sition temperature is very doubtful.

The basic ingredient in the reformulation of MCT in
Refs. [1,2] is the introduction of the metastable defect
variable and its coupling to the density fluctuations in
the glass transition problem. The defect variable is sup-
posed to be governed by a very long time scale compared
to the mass density and the metastability is incorporated
through a double-well-type potential energy for the de-
fect variable. By investigating the conditions that the
defect variable must satisfy in order to be on the crit-
ical surface associated with MCT [12], the authors of
Ref. [1] were able to obtain the observed slowing down
without having to adjust the temperature. The condi-
tion for slowing down is given instead by a self-consistent
condition between the low activation barrier for defects
and its weak coupling to the density fluctuation [1,2].
The temperature dependence of the parameters describ-
ing the metastable potential for defects turns out to be
smooth. The exponents for the time relaxation sequences
can be determined for a range of temperatures showing a
smooth temperature dependence compatible with recent
experiments.

In the analysis of those models, however, the wave-
number dependences were suppressed as a simplifying
assumption. The static structure factor for the density
fluctuation S(g) was treated in a very simple manner by
assuming that it is constant for ¢ < A and zero other-
wise, where A is the large wave-number cutoff. In this
paper, we generalize the previous model by considering
a model where the structure factor has a more realistic
wave-number dependence. We focus here on the dynam-
ics of hard-sphere fluids for which an accurate approx-
imate analytical treatment of S(g) is available. We re-
strict our analysis here to the intermediate time regime
before the primary relaxation where much of the analysis
can be carried out analytically. A detailed MCT analy-
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sis has been carried out in Ref. [13] for this time regime,
which is very useful in our analysis here. We note that
in the previous model [1,2] the temperature was repre-
sented by the parameter £ which is proportional to A3 as
well as to the temperature. The appearance of the large
wave-number cutoff in the temperature parameter & is
directly related to the suppression of the wave-number
dependence in the model. When one considers the wave-
number dependence of S(g), however, we find that the
role played by £ in the previous case is replaced, in the
case of hard-sphere fluids, by the more physical parame-
ter, the packing fraction.

The model in Refs. [1,2] is based on the fluctuating
nonlinear hydrodynamics (FNH) for a set of slow vari-
ables consisting of the mass density p(x), the momentum
density g(x), and the defect density n4(x). In a rigorous
hydrodynamic description of crystalline solids, one would
be forced to include the defect density variable [14,15]
along with Nambu-Goldstone modes due to the broken
translational invariance. In a dense amorphous system,
although there is no broken continuous symmetry, one
can consider a situation where this variable plays a role
in the hydrodynamic description of the system [16]. In
this paper, we do not construct n4(x) from a microscopic
definition. The only information we need is that the de-
fect density is a scalar variable interacting weakly with
the mass density and that it is metastable in the sense
that the potential energy h(ng) for ng4 satisfies h'(fig) = 0
for some 7g.

As discussed in Ref. [17], the wave-number dependence
can be incorporated into the FNH formulation through
the terms in the effective Hamiltonian F' that contains
spatial derivatives of the variables. More generally, one
can include terms where the coefficients depend explicitly
on the position x. We construct F' such that the terms
that depend on the density fluctuation ép yield the cor-
rect static structure factor S(g) for the hard-sphere sys-
tem, where p = p — po with the average mass density
po- In the presence of the defect variable, we must also
consider the effect of the defect structure on the dynam-
ical slowing down. Unfortunately, a microscopic descrip-
tion for the structure factors in the presence of defects is
not available even for a simple system like a hard-sphere
fluid. We assume here that the local behavior of defects
is similar to that of particles. Thus we assume that any
possible effect of the defect structure is reflected in the
coupling term in F' between the density fluctuation and
the defect fluctuation éng4, where dng =~ ng — 14 [18] with
the metastable defect density 774. This assumption is
reasonable since a vacancy is created whenever a particle
moves to a different position to make an interstitial. In
this paper we assume, as a first approximation, that the
coupling term in F' between ép and éng has the same
spatial form as the term quadratic in ép. As we shall
see below, this corresponds to choosing the static defect-
density correlation function to be proportional to s(g)—1,
where s(q) = S(g)/(mpo) is the dimensionless form of the
structure factor S(gq) with m the mass of the particle.
This quantity is just the static structure factor for the
density fluctuation excluding the self-correlation effect.
The potential energy for ny4 is chosen to have the same

double well potential as in Refs. [1,2]. The basic picture
of Refs. [1,2] is then retained in the sense that the slow-
ing down of the dynamics corresponds to the limit of the
low activation barrier for defects and the weak coupling.

As mentioned above, MCT successfully explains the
observed sequence of time relaxations. This sequence can
be summarized as follows: After the microscopic time
scale, the system goes into the intermediate time regime
where the density autocorrelation function ¢(t) exhibits
the power-law decay, ¢ ~ f + A1t~ %, followed by the
von-Schweidler relaxation, ¢ ~ f — Ast’. The system
then crosses over to the primary (a) relaxation regime
which can be described by a stretched exponential decay
6 ~ exp{(t/ra)?}.

In the intermediate time regime, a detailed analysis is
available [13] for the general MCT equations including
the wave-number dependence. It is shown there that all
microscopic structural details are summarized into one
exponent parameter A, which gives the power-law and
the von-Schweidler exponents a and b. Thus, given a mi-
croscopic model, the corresponding A can be calculated.
In the present case, we find, assuming the system is on
the critical surface, that A depends upon the parameter
describing the overall scale of the metastable potential
for defects as well as on the packing fraction. This re-
sult that the exponent parameter A is given as a func-
tion of the packing fraction is conceptually very different
from the results of the earlier MCT calculations on the
hard-sphere system [7,19-21], where only the simplest
contribution from the density fluctuation to the dynamic
viscosity is taken into account. In those cases, the tran-
sition is controlled by the packing fraction and thus A
is defined only at the critical packing fraction just as in
a second-order phase transition. According to the pic-
ture presented here, the transition can take place over
a range of packing fractions with different values of the
exponents.

In Sec. II, we construct the FNH model including the
wave-number dependence and present the relevant results
to our discussion of the slowing down of the dynamics.
Since the calculation follows closely those in Refs. [1,2]
for the wave-number-independent model, we emphasize
here only the important results. In Sec. III, we present
the results of numerical analysis of the model. In Sec. IV,
we conclude with a brief discussion.

II. MODEL

The FNH approach developed in Refs. [1,2] is based on
the generalized Langevin equations for the slow variables,
{p,8,na}. As mentioned in the preceding section, the
wave-number dependence can be implemented through
general spatially varying coefficients of terms in the ef-
fective Hamiltonian F'[p, g, nq], which governs the static
property. In the present model, F is given by

Flp,g,n4] = Fx[6p,g] + Fu[6p] + F.[6p,nd] + Fy[ng).
(2.1)

Here Fk is the usual kinetic energy term Fk[p,g] =
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J d®x g?/(2p). For the terms that are dependent on
the density fluctuation only, we take the Ramakrishnan-
Yussouff form [22]

kpT kpT
F.[6p] = L/d3x [p 1n;”;—5p} —5%5

m

X /d3xd3x' Sp(x)C(x — x")ép(x'), (2.2)

where kpT is the temperature, m is the mass, and C(z)
is the Ornstein-Zernike direct correlation function for the
density fluctuation [23]. For the coupling term, we have
in general

F.[6p,nq4] = /dsxdsx' na(x)B(x — x)ép(x') (2.3)

for some function B(x) to be specified later. Equa-
tion (2.3) is the simplest coupling term between two
scalar variables. We write the Fourier transform of B(x)
as B(q) = [d3xexp(igqx)B(x) = Bb(g), where the con-
stant B represents a scale of the coupling energy with
the appropriate dimension for B(g) and the dimension-
less b(g) contains the wave-number dependence of B(q).
In Eq. (2.1), the potential-energy part F,[ng4] for ng is
given by the same double-well potential h(ng) with the
metastable defect density 7ig as in Refs. [1,2]: F,[n4] =
J d*x h(ng). In fact, one can take a general form for
h(nq) which satisfies h'(7ig) = 0. Then the potential en-
ergy is described by the parameters u = a2h"(7y) and
v = a3k (Aq). We note that, if 4 — 0, the potential
h(ng) develops an inflection point at n = 74, which cor-
responds to the potential with very shallow metastable
wells and low activation barriers for the defects.

The static correlation functions can readily be found
from Eq. (2.1):

m2n0

(6p(a)dp(—q)) = S(q) = Tl (2.4a)
(Bo(@3n(=a)) = o S@H(a), (2.4b)
(sn(@)én(-a)) = 2o, (2.40)

where ng = po/m is the average number density. The
first equation reproduces the correct relation between
the static structure factor s(q) and the direct correla-
tion function C(g). In calculating Eq. (2.4), we ne-
glected the terms of order B2/u compared to those of
order B/p, which is consistent with the self-consistent
condition obtained in Ref. [1] for the slowing down of the
dynamics: The slowing down corresponds to a weak cou-
pling (B — 0) and a shallow metastable well for defects
(# — 0) with the condition B ~ p2. As indicated in
Sec. I, the coupling energy term is constructed such that
the static defect-density correlation function behaves like
s(g) — 1. This is achieved in Eq. (2.4) by taking

b(q) = —noC(q)-
As one can see from Egs. (2.2), (2.3), and (2.5), the cou-

(2.5)

pling term F, has the same form as the quadratic inter-
action term between the density fluctuations.

The construction of the generalized Langevin equa-
tions for a general set of slow variables is described
in Ref. [24]. The main ingredients in the construction
are the effective Hamiltonian and the Poisson brack-
ets between the slow variables which are related to the
streaming velocities governing the reversible dynamics.
In the present case, the set of slow variables is given
by {p,g,nq} with the effective Hamiltonian, Eq. (2.1).
The Poisson brackets involving the defect density ng4
are taken to have the same structure as those involv-
ing p, since ng4 is a scalar quantity. The calculation of
the Langevin equations in this case from the effective
Hamiltonian Eq. (2.1) is a straightforward generaliza-
tion of the wave-number-independent case described in
Refs. [1,2]. The final expressions for the Langevin equa-
tions, however, are quite complicated due to the pres-
ence of the spatially varying coeflicients in the effective
Hamiltonian, which will not be presented here. One can
put those equations into the field-theoretic formalism of
Martin-Siggia-Rose [25], which allows one to systemati-
cally calculate the nonlinear corrrections to the Gaussian
response and correlation functions. The detailed calu-
lation of the nonlinear corrections relevant to the glass
transition problem also follows closely the wave-number-
independent case and the reader is referred to Refs. [1,2].

In the framework of MCT, nonlinear couplings between
density fluctuations in the dynamic viscosity are respon-
sible for the dynamical slowing down. This mechanism
is most easily seen through the normalized density auto-
correlation function:

#(a,t) = (dp(a,t)ép(—a,0))/S5(q)-

The Laplace transform of ¢(q,t), defined by ¢(q,z) =
—1 f0°° dt exp(izt)¢(q,t), is represented as

(2.6)

pz +i¢°T'(q, 2)
22 — Q3(q)] + i2¢?T'(q, 2)’

#(q,z) = o (2.7)

where Q2(g) is the microscopic phonon frequency and
I'(q, z) is the renormalized dynamic viscosity.

As discussed in Sec. I, MCT predicts that ¢(q,t), as
a function of time, exhibits a very elaborate relaxation
sequence. As a first step, we restrict the present analysis
to the intermediate time regime where the MCT analysis
is significantly simplified in the following aspects. As
shown in Ref. [13], all the structural details of the system
in the intermediate time regime can be described by a
single number A which is related to the power-law and
the von-Schweidler exponents a and b in the usual way
[12]:

r’(1—a) _
I'(1-2a)

_I?(1+))

A= I'(1+2b)’

(2.8)

where I' denotes the gamma function. Consequently, a
and b are wave-number independent, while all the other
parameters describing the time relaxation sequence de-
pend on the wave number. Also, in the intermediate
time regime, the defect autocorrelation function can be
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regarded as a constant in time due to its extremely long
time scale [2]: (dn(q,t)én(—q,0)) = kT /h"(7ig). Thus,
the analysis of the system in the a-relaxation regime
must include the time dependence of the defect auto-
correlation function as was analyzed in the wave-number-
independent case in Ref. [2]. In the intermediate time
regime, this kind of complication does not occur and the
renormalized viscosity can be expressed in terms of the
density autocorrelation function alone.

For the calculation of the nonlinear contribution
to I'(q,z), we follow the field-theoretic calculation in
Ref. [2]. We find, in the time regime before the primary
a relaxation, the dynamic viscosity is represented by

a3k

_ i 1zt
I'(q,2) =T + /0 dte ——(271_)3

x [V (q, k)p(k, 1)

+V®(q,k)p(k, t)p(q - k, t)] ,

(2.9)

where V(1) and V(®) are appropriate vertices to be eval-
uated and I’y is the bare viscosity governing the micro-
scopic dynamics. The appearance of the term linear in
¢(k,t) in Eq. (2.9) is a direct consequence of the constant
defect autocorrelation function in this time regime [26].
The vertices V(1) and V(?) depend on the coupling
constant B and the parameters p,v describing the
metastable potential h(ng) for defects. The basic picture
obtained in Ref. [1] is that the slowing down corresponds
to the weak coupling (B — 0) and the low activation
barrier (4 — 0) limit with the condition B ~ u2. In
this limit, the vertices are completely described by the
average number density ny and the following two dimen-
sionless parameters:
1 v 2 T
n— k BT " v /1,2 ’

il
il

Y (2.10)
where ¢ = (Bpofiq)/(nokpsT) is the dimensionless pa-
rameter describing the scale of the coupling energy. We
recall that v is the parameter proportional to the third
derivative of h(ngq) at ng = 774. Thus, when the second
derivative 4 — 0, the parameter y just represents the
overall scale of the double-well potential. The parameter
K is the appropriate ratio between the weak coupling (z)
and the low barrier (u2) for defects. We find that for the
effective Hamiltonian, Eq. (2.1), the vertices are given
by

v (ak) = 22 2 (g k)s10s(a - 1)

+,m00(k)s(k)] + O(p) (2.11a)

v (g k) = D[ L2k

2q2
~v2U(a10]s(k)s(a~1) + O(u), (211b)

where

U(ak) = 1 [(@-0meC(0 +a- (a- KnoC(a~ k).
(2.12)

We note that in the previous MCT studies of hard-sphere
fluids [7,19-21] only the quadratic contribution (V(?))
with the first term in Eq. (2.11b) was considered, which
corresponds to the case where y = x = 0 in this model.

III. ANALYSIS OF THE MODEL

Equations (2.7) and (2.9) with the vertices Eq. (2.11)
completely specify our model which incorporates the
wave-number dependence of the system. In this section,
we apply the model to the case of a hard-sphere fluid us-
ing a known approximate but realistic hard-sphere struc-
ture factor.

A. Basic equations from the general MCT analysis

We first discuss the relevant results from the detailed
MCT treatment [13] of Egs. (2.7) and (2.9) for a gen-
eral set of vertices V() i =1,2,..., M. It was found that
the microscopic structural details of the system are sum-
marized into a single parameter A. This parameter is
related to the the power-law and von-Schweidler expo-
nents a > 0 and b > 0 via Eq. (2.8). The MCT analysis
of the coupled set of equations (2.7) and (2.9) indicates
an ergodic-nonergodic-type transition as parameters de-
scribing the vertices approach critical values. The non-
ergodic phase is characterized by ¢(q,t — o0) = f(q)
with f(q) > 0. In the present case where M = 2, the
nonergodicity parameter f(q) is given as a nonvanishing
solution of

fla) _ a*k o1
1—f(@) J (2n)3 [V (a,k)f (k)

+V ) (a, k) () f(a- k),

(3.1)

while in the ergodic phase, only the trivial solution
f(g) = 0 to Eq. (3.1) can be found. The exponent pa-
rameter ) is determined for the critical values of the pa-
rameters by

A= [ &3 [ BN ey @i - £
X[l - fc(q - k)] ec(k)ec(q - k),

where e.(k) and é.(k) are left and right eigenvectors of

W(q,k) = [1 - £o()][VD (g, k)

(3.2)

+2V® (q,k) f.(q — k)] , (3.3)
d*k
(—2;‘)3W(q’ k)e.(k) = ec(q),
(3.4)

d*q R
[ e @W(a ) = ek
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with the normalization 1 = [d3k/(2r)3é.(k)e.(k) =
J &k/(2m)%e. (k)2 (W)L - £o(K)].

As mentioned in the preceding section, MCT predicts
a two-step relaxation process in the intermediate time
regime. After the microscopic time scale 73, the normal-
ized density autocorrelation function ¢(q,t) shows the
power-law decay which can be described as [20,27]

#at) = fo(a) + h(@)ce( ) (3:5)

a

This is valid for the time regime 79 < t <« 7,, where the
characteristic time scale is given by

Ta ~ || 7% (3.6)
Here € is the control parameter indicating how far the
system is from the transition and thus the ideal glass
transition corresponds to € = 0. In Eq. (3.5), the coeffi-
cients are given by cc = 1/|¢| and h(g) = [1— f.(¢)]%ec(q)-
For longer times t > 7,, the system undergoes the von-
Schweidler relaxation if € < 0,

b
#(a,t) = folg) — h(9) A2 () (3.7)

t

Ta
with a positive constant A;. This mechanism is valid
for the time scale 7, < t < 7, before the a relaxation,
where the characteristic time scale for the o relaxation is
given by

11
7= 2" 2
For € > 0, ¢(q,t) decays to a constant, f(q) = f.(q) +
h(g)ce/v/1 — A. We note that the critical nonergodicity
parameter f.(q) and the coefficient h(q) do not depend
on the control parameter e.

Ta ~ Iel_‘yv

(3.8)

B. Analysis for a hard-sphere fluid

We calculate the vertices given by Eq. (2.11), using the
Perkus-Yevick solution [23] for the hard-sphere structure
factor, s(go), with the Verlet-Weiss correction [28], where
o is the sphere diameter. For this system, it is more
convenient to use the packing fraction 7 instead of the
average number density ng, where = mo3n/6. The
wave-number integration is done with the mesh size N =
300 and the upper cutoff Ao = 50.

As can be seen from Eq. (2.11), our model for the
dynamics of hard-sphere fluids depends on the packing
fraction 7 and the metastability parameters y and k. We
recall that y describes the overall scale of the double-well
potential for defects and « is the appropriate ratio be-
tween the weak coupling and the low activation barrier
as defined in Eq. (2.10). We first investigate whether the
double-well potential and the coupling between the de-
fects and the density fluctuations can be arranged to yield
the slowing down of the dynamics. In order to see this, we
solve Eq. (3.1) iteratively for given y, x, and . We find
that for given packing fraction 7, a nontrivial solution
f(g) > 0 can be found and thus the dynamical slowing
down is obtained for certain values of parameters y and
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FIG. 1. The critical surface in the y-«x space for various
values of packing fraction 7. The thick dashed line is Ymin(7)-
For n > 0.53, the critical surface does not extend to the small
Y (¥ < Ymin) regions.

#. In fact, there exsists a critical surface in the y-« space
that separates the nonergodic [f(g) > 0] and the ergodic
[f(g) = 0] phases. This critical surface can be found for
various values of the packing fraction (see Fig. 1). This
result is quite different from that found in the previous
MCT studies of the hard-sphere system [7,19-21], which
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FIG. 2. (a) The critical nonergodicity parameter f.(g) for
y = 0.1 and for various values of packing fraction (). (b)
The critical nonergodicity parameter f.(q) for packing frac-
tion = 0.52 and for various values of y. The thick solid line
is fc(q) of the conventional MCT at n = 7. ~ 0.525.
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corresponds to the case where y = k = 0. According to
those studies, the transition occurs at the critical pack-
ing fraction 7, ~ 0.525 [19]. This value is determined
by the packing fraction at which the first nonvanishing
solution of Eq. (3.1) appears when 7 is increased. The
present analysis shows that the dynamical slowing down
is controlled by the metastability parameters y and « ar-
ranging themselves to be on the critical surface so that
the transition occurs over a range of n which contains 7,
of the conventional MCT.

For a given packing fraction, the values of « on the
critical surface do not change very much as shown in
Fig. 1. As the packing fraction decreases, these critical
values of k increase. Since the hard-sphere system re-
mains a fluid for a small enough packing fraction, the
parameter « should be bounded from above. The exact
upper bound, however, is not determined in the present
analysis for reasons discussed below. For high packing
fractions 7 2 0.525, the critical surface does not extend
to the small y region: For n 2 0.525 and for y smaller
than some value yuin, one always has a nonvanishing so-
lution f(q) to Eq. (3.1). The value of ymin increases with
increasing 7 (see Fig. 1). We note that for small packing
fractions (n S 0.505) or for large y (y 2 1.5), the con-
tribution to f(g) from the large wave numbers become
significant as seen in Figs. 2(a) and 2(b). This makes the
present iteration analysis of Eq. (3.1) with the numerical
large wave-number cutoff Ao = 50 less reliable for suffi-
ciently small or large packing fractions. However, for the
range of packing fractions, 0.51 < 1 S 0.54, the present
analysis clearly shows the slowing down of the dynamics.

For the parameters on the critical surface, one can de-
termine the critical nonergodicity parameter f.(¢) and
the coefficient h(g) as defined in Egs. (3.5) and (3.7). In
Figs. 2 and 3, f.(q) and h(q) are shown for various val-
ues of 1 and y along with the corresponding quantities
of the conventional MCT at 7 = 7.. In the framework of
MCT, approaching the critical values of the parameters is
represented by the parameter € — 0 [see Egs. (3.5) and

h(qo)

0.0 10.0 20.0 30.0 40.0 50.0
qo

FIG. 3. The coefficient h(q) describing the power-law and
the von-Schweidler relaxations as expressed in Egs. (3.5) and
(3.7) for y = 0.1 and for various values of packing fraction
(pf). The thick solid line is h(g) of the conventional MCT at
n = n. ~ 0.525.
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FIG. 4. The exponent parameter A as a function of packing
fraction 7 for various values of y. The star (%) represents the
conventional MCT value A ~ 0.758 at n = 7. ~ 0.525.

(3.7)]. The conventional MCT analysis of hard-sphere
fluids [7,19-21] is based on the assumption that the tran-
sition is actually controlled by the packing fraction ap-
proaching its critical value: € ~ n — n.. Thus, in those
analyses, the critical nonergodicity parameter f.(g) and
the coefficient h(g) are regarded as parameters indepen-
dent of 7. In the present model, however, the transition
occurs when the system becomes metastable with the low
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FIG. 5. The power-law and von-Schweidler exponents a
and b as functions of packing fraction n for various values
of y.
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activation barrier (1 — 0) and the weak coupling (z — 0)
satisfying the condition z/u? — & [see Eq. (2.10)], while
the metastability parameters y and s arrange themselves
to be on the critical surface in y-« space shown in Fig. 1.
Thus, the control parameter in this case is proportional
to pu. Therefore, in contrast to the conventional MCT,
fe(g) and h(q) depend on the parameter y describing the
overall scale of the defect potential as well as the packing
fraction. As one can see from Fig. 2 for fixed y, f.(q)
shows a variation with 7 such that it has larger (smaller)
values for low (high) wave numbers as the packing frac-
tion increases.

For a given point on the critical surface, (y,%(y)), one
can calculate the exponent parameter A using Eq. (3.2).
Thus, in this model X is determined as a function of 7
and y as shown in Fig. 4. Consequently, the exponents
a and b characterizing the intermediate time regime are
not subject to a particular value of packing fraction, in-
stead they are given as smooth functions of n with one
additional parameter y (see Fig. 5). As a function of the
packing fraction, A(n) generally takes smaller values as
one goes into the region of either small or large packing
fractions. It should be noted in Fig. 4 that the values of
A become less reliable for large y (y 2 1.5) and small n
(n < 0.505) because of the reason discussed above con-
cerning the contribution from the large wave numbers.
It is important to note that within the band of packing
fractions 0.51 < 7 < 0.54 where the dynamical slowing
down is obtained, A(7n) is not a constant as a function of

7.

IV. DISCUSSION AND CONCLUSION

In this paper, we have been able to show how the
metastability parameters describing the defects are in-
corporated in the structural arrest of hard-sphere fluids.
The basic picture we obtain is that the transition is not
a sharp one at a special value of packing fraction, but
rather the transition occurs over a range of packing frac-
tions as the metastability parameters arranging them-
selves to be on the critical surface as shown in Fig. 1.

In some sense, the present model just replaces the role
played by the critical packing fraction 7, ~ 0.525 of the
conventional MCT of the hard-sphere system [7,19-21] in
the slowing down of the dynamics by a band of packing
fractions, 0.51 < 1 < 0.54, which include n.. However,
our model has very different physical implications from
the one studied in the conventional MCT in the follow-
ing aspects. (1) In the conventional MCT, the exponent
parameter A is defined only at the critical packing frac-
tion 7., where its value is evaluated as A ~ 0.758 [20].
This value is somewhat larger than most of the values of
A found in the present model (see Fig. 4). Correspond-
ingly, the values of the power-law and von-Schweidler ex-
ponents @ and b in this model are larger than the con-
ventional MCT values, a = 0.301 and b = 0.545. More
importantly, since our model is not tied to the notion of
7e, the exponent parameter A can be defined over a range
of 7. Furthermore, as a function of , A is not a constant.
Instead, it shows a variation as shown in Fig. 4. (2) Other

physical parameters such as the critical nonergodicity pa-
rameter f.(q) and the coefficient h(g) describing the time
relaxation sequence also depend on 7 in our model, while
fe(q) and h(q) are defined only at n = 7. in the con-
ventional MCT. These differences can be summarized in
terms of the control parameter € of each model such that
in the conventional MCT, € ~ —n. with the well-defined
1. and € is proportional to the metastability parameter
o in the present model.

Recently, there have been many experiments on col-
loidal systems consisting of spherical particles [29-31], to
which the MCT analysis of hard-sphere fluids has been
applied. It is claimed in those experiments that the crit-
ical packing fraction 7. for the glass transition could be
identified. The obtained values of 7. range from 0.555 to
0.575 for suspensions of PMMA particles [29,30] to 0.636
for microgels [31]. However, it is important to note that
the identification of 7. in those experiments is carried
out using somewhat indirect methods: For the PMMA
system, 7). is taken as the value of 7 at which a homoge-
neously nucleated crystallization does not occur. For the
system studied in Ref. [31], 7. is determined by fitting the
experimental data against MCT results Eqgs. (3.5) and
(8.7) assuming that the control parameter is € ~ 7 — 7.
Thus, these experimental results should not be consid-
ered as conclusive evidence for the existence of 7., which
is defined by the packing fraction at which the density
autocorrelation function ¢(q,t) shows a sharp ergodic-
nonergodic transition, i.e., ¢(q, t) decays to a finite quan-
tity if n > 7. and to zero otherwise as t — oco. As we
shall show below, one could instead find evidence from
those experimental data that supports the basic picture
described in this paper where the glass transition in the
hard-sphere system is in fact not a sharp one.at the well-
defined transition density, but it results from the system
becoming metastable.

As can be seen from the claimed values of 7. in those
experiments, the values of packing fraction where the dy-
namical slowing down is observed are generally higher
than the band of , 0.51 < n < 0.54 obtained here and
also than 7. ~ 0.525 of conventional MCT. This dis-
crepancy has usually been neglected in the conventional
MCT studies of the hard-sphere system [19-21]. In fact,
in those analyses, only the difference n — 7. is used to
compare with the experimental data, where 7. of the
conventional MCT is identified with the claimed values
in the experiments. This discrepancy in 7 values between
MCT and experiments is usually attributed [19] to the
fact that MCT, without including the cutoff effect [10],
tends to overestimate the tendency to freeze. We believe
that this explanation also holds in the present case where
7 is replaced by the band of packing fractions. We note
that the systems considered in those experiments do not
have the ideal hard-sphere-type potential as their inter-
particle interactions, which might also contribute to this
discrepancy.

In order to test experimentally the present picture of
the dynamical slowing down in the hard-sphere system,
one must study the dependence of the exponent param-
eter A and the critical nonergodicity parameter f.(g) on
the packing fraction 5. A variation of these quantities as
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a function of 7 would imply that the system undergoes
a smooth transition without the special transition pack-
ing fraction. In the experiments mentioned above, A and
fc(q) are obtained by using Egs. (3.5) and (3.7) to fit the
intermediate time relaxation data of ¢(q,t). But, un-
fortunately, in most cases [29,30], the analysis is carried
out under the assumption that € ~ 7 — n.. In particu-
lar, the value of ) is not obtained from the experimental
data. Instead the conventional MCT value A ~ 0.758 is
directly applied to the analysis of the data. Also the ap-
parent variations of f.(q) with n observed in Refs. [29,30]
are not systematically studied but neglected in the anal-
ysis. Thus, in order to see the 1 dependence of A and
fe(g), a more careful study of the experimental data is
needed that treats A, f.(q), h(g)ce, and 7, in Egs. (3.5)
and (3.7) as adjustable parameters without assuming any
particular form for the control parameter e.

In fact, this kind of analysis has been performed at
one point of the discussion in Ref. [31]. For fixed wave
number ¢, one can indeed see variations of A and f.(g)
values as functions of 7 (see Fig. 5 of Ref. [31]) when
they are treated as free parameters. We note that the
amount of variation of the exponent values is actually
comparable to the present findings (see Figs. 4 and 5),
although there are some differences between the actual
values of the exponents a and b and the range of packing
fractions over which the exponents are measured. The
authors of Ref. [31] actually concluded that these vari-
ations are not systematic ones and treated A and f.(q)
as constants throughout their analysis. In order to see
if these kind of data really show a dependence of the
physical parameters, A and f.(g) on 7 as described in
the present analysis, which results from the metastable
nature of the transition, a more detailed study is needed
covering a wide range of values of the wave numbers and
packing fractions.

The present model predicts that f.(¢g) and A depend
on n with one additional parameter y (see Figs. 2 and
4). We note that y is the dimensionless parameter which
represents the overall scale of the potential energy for
the defects. We interpret this metastability parameter
y as something that depends on the microscopic details
of the system and that may also have the packing frac-

tion dependence in it, which is not, however, determined
within the present theory. We believe that the parameter
y could be specified in principle as a function of packing
fraction through a comparison with more detailed exper-
imental data showing the dependence of f.(¢) and A on
7.
We emphasize that in this paper we are mainly con-
cerned with the qualitative picture of the effect of the
defect structure on the slowing down of the dynamics
of the hard-sphere systems, since the defect structure
has been approximated in a simple way using Eq. (2.5).
Nevertheless, our model provides an important picture
of smooth transition with the physical parameters such
as the exponents a and b governing the time relaxation
sequence and the critical nonergodicity parameter f.(g)
depending smoothly on the packing fraction. And this
general picture might be robust in more complex sys-
tems. An example of such system where the exponents
depend smoothly on the temperature can be found in the
experiment in Ref. [5].

We also note that we have focused on the intermedi-
ate time regime before the primary o relaxation. In this
time regime, the defect autocorrelation function can be
regarded as a constant in time [1,2] due to its long time
scale. For the wave-number-independent case, one could
extend the FNH formalism by considering the time de-
pendence of the defect autocorrelation function as shown
in Ref. [2]. One can in principle extend the present
wave-number-dependent model to the primary relaxation
regime by considering the full time and wave-number de-
pendences of the density and the defect autocorrelation
functions following Ref. [2]. The analysis of such a model,
however, will be a very difficult task.

ACKNOWLEDGMENTS

I gratefully acknowledge Professor Gene F. Mazenko
for his suggestion that I work on this subject. I am espe-
cially grateful for his encouragement and support. This
work was supported primarily by the MRSEC Program of
the National Science Foundation under Grant No. DMR-
9400379.

[1] G. F. Mazenko and J. Yeo, J. Non-Cryst. Solids 172-174,
1 (1994).

[2] J. Yeo and G. F. Mazenko, Phys. Rev. E 51, 5752 (1995).

[3] E. Leutheusser, Phys. Rev. A 29, 2765 (1984).

[4] For a review of the theoretical development of MCT, see
W. Gotze, in Liquids, Freezing, and the Glass Transition,
edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin
(Elsevier, New York, 1991); see also B. Kim and G. F.
Mazenko, Phys. Rev. A 45, 2923 (1992).

[5] P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams, and J.
P. Carini, Phys. Rev. Lett. 65, 1108 (1990).

[6] A. Schénhals, F. Kremer, A. Hoffmann, E. W. Fischer,
and E. Schlosser, Phys. Rev. Lett. 70, 3495 (1993); D.
L. Sidebottom, R. Bergman, L. Borjesson, and L. M.

Torrell, ibid. 68, 3587 (1992).

[7] V. Bengtzelius, W. Gotze, and A. Sjolander, J. Phys. C
17, 5915 (1984).

[8] F. Meizei, W. Knaak, and B. Farago, Phys. Rev. Lett.
58, 571 (1987); D. Richter, B. Frick, and B. Farago, ibid.
61, 2465 (1988); W. Doster, S. Cusack, and W. Petry,
ibid. 65, 1080 (1990); W. Petry, E. Bartsch, F. Furuja,
M. Kiebel, H. Sillescu, and B. Farago, Z. Phys. B 83, 175
(1991).

[9] N. J. Tao, G. Li, and H. Z. Cummins, Phys. Rev. Lett.
66, 1334 (1991); G. Li, W. M. Du, X. K. Chen, H. Z.
Cummins, and N. J. Tao, Phys. Rev. A 45, 3867 (1992);
G. Li, W. M. Du, A. Sakai, and H. Z. Cummins, ibid. 46,
3343 (1992).



52 METASTABLE DYNAMICS OF THE HARD-SPHERE SYSTEM 861

[10] S. P. Das and G. F. Mazenko, Phys. Rev. A 34, 2265
(1986).

[11] H. Z. Cummins, W. M. Du, M. Fuchs, W. Gétze, S. Hilde-
brand, A. Latz, G. Li, and N. J. Tao, Phys. Rev. E 47,
4223 (1993).

[12] W. Gdtze, Z. Phys. B 56, 139 (1984).

(18] W. Gétze, Z. Phys. B 60, 195 (1985).

[14] P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev.
A 6, 2401 (1972).

[15] P. D. Fleming and C. Cohen, Phys. Rev. B 13, 500
(1976).

[16] C. Cohen, P. D. Fleming, and J. H. Gibbs, Phys. Rev. B
13, 866 (1976).

[17] S. P. Das, Phys. Rev. A 36, 211 (1987).

(18] Because of the coupling term, the fluctuation dng de-
pends also on §p. See Ref. [1].

[19] J. L. Barrat, W. Gétze, and A. Latz, J. Phys. Condens.
Matter 1, 7163 (1989).

[20] W. Gotze and L. Sjogren, Phys. Rev. A 43, 5442 (1991).

[21] M. Fuchs, I. Hofacker, and A. Latz, Phys. Rev. A 45, 898
(1992).

[22] T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19,
2775 (1979).

[23] J. P. Hansen and 1. R. McDonald, Theory of Simple Lig-
uids (Academic, London, 1986).

[24] S.-k. Ma and G. F. Mazenko, Phys. Rev. B 11, 4077
(1975).

[25] P. C. Martin, E. D. Rose, and H. A. Siggia, Phys. Rev. A
8, 423 (1973). See also G. F. Mazenko and J. Yeo, J. Stat.
Phys. 74, 1017 (1994) for a field-theoretic treatment of
the 1/p nonlinearities in this model which are intrinsic to
compressible fluids.

[26] A similar mechanism generating the linear (VV)) term
was first proposed in B. Kim, Phys. Rev. A 46, 1992
(1992).

[27] W. Gétze, J. Phys. Condens. Matter 2, 8485 (1990).

[28] L. Verlet and J.-J Weiss, Phys. Rev. A 5, 939 (1972).

[29] P. N. Pusey and W. van Megen, Phys. Rev. Lett. 59, 2083
(1987); Ber. Bunsenges. Phys. Chem. 94, 225 (1990); W.
van Megen and P. N. Pusey, Phys. Rev. A 43, 5429
(1991); W. van Megen, S. M. Underwood, and P. N.
Pusey, Phys. Rev. Lett. 67, 1586 (1991).

[30] W. van Megen and S. M. Underwood, Phys. Rev. E 47,
248 (1993); Phys. Rev. Lett. 70, 2766 (1993).

[31] E. Bartsch, M. Antonietti, W. Schupp, and H. Sillescu,
J. Chem. Phys. 97, 3950 (1992).



